全站首頁(yè)|PPT模板|PPT素材|PPT背景圖片|PPT圖表|PPT下載 下載幫助|文章投稿
第一PPT > PPT課件 > 數學(xué)課件 > 人教高中數學(xué)A版必修一 > 《函數的基本性質(zhì)》函數的概念與性質(zhì)PPT課件(第1課時(shí)函數的單調性)

《函數的基本性質(zhì)》函數的概念與性質(zhì)PPT課件(第1課時(shí)函數的單調性)

《函數的基本性質(zhì)》函數的概念與性質(zhì)PPT課件(第1課時(shí)函數的單調性) 詳細介紹:

《函數的基本性質(zhì)》函數的概念與性質(zhì)PPT課件(第1課時(shí)函數的單調性)《函數的基本性質(zhì)》函數的概念與性質(zhì)PPT課件(第1課時(shí)函數的單調性)《函數的基本性質(zhì)》函數的概念與性質(zhì)PPT課件(第1課時(shí)函數的單調性)《函數的基本性質(zhì)》函數的概念與性質(zhì)PPT課件(第1課時(shí)函數的單調性)《函數的基本性質(zhì)》函數的概念與性質(zhì)PPT課件(第1課時(shí)函數的單調性)

《函數的基本性質(zhì)》函數的概念與性質(zhì)PPT課件(第1課時(shí)函數的單調性)

第一部分內容:學(xué) 習 目 標

1.理解函數的單調性及其幾何意義,能運用函數圖象理解和研究函數的單調性.(重點(diǎn)、難點(diǎn))

2.會(huì )用函數單調性的定義判斷(或證明)一些函數的單調性.(難點(diǎn))

3.會(huì )求一些具體函數的單調區間.(重點(diǎn))

核 心 素 養

1.借助單調性的證明,培養邏輯推理素養.

2.利用求單調區間及應用單調性解題,培養直觀(guān)想象和數學(xué)運算素養.

... ... ...

函數的基本性質(zhì)PPT,第二部分內容:自主預習探新知

新知初探

1.增函數與減函數的定義

條件  一般地,設函數f(x)的定義域為I,區間D⊆I:如果∀x1,x2∈D,當x1<x2時(shí)

         都有_____________   都有_____________

結論   那么就說(shuō)函數f(x)在區間D上是___函數 那么就說(shuō)函數f(x)在區間D上是___函數

思考1:增(減)函數定義中的x1,x2有什么特征?

提示:定義中的x1,x2有以下3個(gè)特征:

(1)任意性,即“任意取x1,x2”中“任意”二字絕不能去掉,證明時(shí)不能以特殊代替一般;

(2)有大小,通常規定x1<x2;

(3)屬于同一個(gè)單調區間.

2.函數的單調性與單調區間

如果函數y=f(x)在區間D上_____________,那么就說(shuō)函數y=f(x)在這一區間具有(嚴格的)單調性,區間D叫做y=f(x)的________.

思考2:函數y=1x在定義域上是減函數嗎?

提示:不是.y=1x在(-∞,0)上遞減,在(0,+∞)上也遞減,但不能說(shuō)y=1x在(-∞,0)∪(0,+∞)上遞減.

初試身手

1.函數y=f(x)的圖象如圖所示,其增區間是(  )

A.[-4,4]

B.[-4,-3]∪[1,4]

C.[-3,1]

D.[-3,4]

2.下列函數中,在區間(0,+∞)上是減函數的是(  )

A.y=-1x

B.y=x

C.y=x2

D.y=1-x

3.函數f(x)=x2-2x+3的單調減區間是________.

... ... ...

函數的基本性質(zhì)PPT,第三部分內容:合作探究提素養

求函數的單調區間

【例1】求下列函數的單調區間,并指出該函數在其單調區間上是增函數還是減函數.

(1)f(x)=-1x;(2)f(x)=2x+1,x≥1,5-x,x<1;

(3)f(x)=-x2+2|x|+3.

[解](1)函數f(x)=-1x的單調區間為(-∞,0),(0,+∞),其在(-∞,0),(0,+∞)上都是增函數.

(2)當x≥1時(shí),f(x)是增函數,當x<1時(shí),f(x)是減函數,所以f(x)的單調區間為(-∞,1),[1,+∞),并且函數f(x)在(-∞,1)上是減函數,在[1,+∞)上是增函數.

規律方法

求函數單調區間的方法

(1)利用基本初等函數的單調性,如本例(1)和(2),其中分段函數的單調區間要根據函數的自變量的取值范圍分段求解;

(2)利用函數的圖象,如本例(3).

提醒:若所求出函數的單調增區間或單調減區間不唯一,函數的單調區間之間要用“,”隔開(kāi),如本例(3).

函數單調性的判定與證明

【例2】證明函數f(x)=x+1x在(0,1)上是減函數.

[思路點(diǎn)撥] 設元0<x1<x2<1―→作差:fx1-fx2

――→變形判號:fx1>fx2――→結論減函數

規律方法

利用定義證明函數單調性的步驟

1取值:設x1,x2是該區間內的任意兩個(gè)值,且x1<x2.

2作差變形:作差fx1-fx2,并通過(guò)因式分解、通分、配方、有理化等手段,轉化為易判斷正負的式子.

3定號:確定fx1-fx2的符號.

4結論:根據fx1-fx2的符號及定義判斷單調性.

提醒:作差變形是證明單調性的關(guān)鍵,且變形的結果是幾個(gè)因式乘積的形式.

函數單調性的應用

[探究問(wèn)題]

1.若函數f(x)是其定義域上的增函數,且f(a)>f(b),則a,b滿(mǎn)足什么關(guān)系.如果函數f(x)是減函數呢?

提示:若函數f(x)是其定義域上的增函數,那么當f(a)>f(b)時(shí),a>b;若函數f(x)是其定義域上的減函數,那么當f(a)>f(b)時(shí),a<b.

2.決定二次函數f(x)=ax2+bx+c單調性的因素有哪些?

提示:開(kāi)口方向和對稱(chēng)軸的位置,即字母a的符號及-b2a的大。

... ... ...

函數的基本性質(zhì)PPT,第四部分內容:當堂達標固雙基

1.思考辨析

(1)所有的函數在其定義域上都具有單調性.(  )

(2)若函數y=f(x)在區間[1,3]上是減函數,則函數y=f(x)的單調遞減區間是[1,3].(  )

(3)函數f(x)為R上的減函數,則f(-3)>f(3).(  )

(4)若函數y=f(x)在定義域上有f(1)<f(2),則函數y=f(x)是增函數.(  )

(5)若函數f(x)在(-∞,0)和(0,+∞)上單調遞減,則f(x)在(-∞,0)∪(0,+∞)上單調遞減.(  )

2.如圖是定義在區間[-5,5]上的函數y=f(x),則下列關(guān)于函數f(x)的說(shuō)法錯誤的是(  )

A.函數在區間[-5,-3]上單調遞增

B.函數在區間[1,4]上單調遞增

C.函數在區間[-3,1]∪[4,5]上單調遞減

D.函數在區間[-5,5]上沒(méi)有單調性

3.如果函數f(x)=x2-2bx+2在區間[3,+∞)上是增函數,則b的取值范圍為(  )

A.b=3

B.b≥3

C.b≤3

D.b≠3

... ... ...

關(guān)鍵詞:高中人教A版數學(xué)必修一PPT課件免費下載,函數的基本性質(zhì)PPT下載,函數的概念與性質(zhì)PPT下載,函數的單調性PPT下載,.PPT格式;

《函數的基本性質(zhì)》函數的概念與性質(zhì)PPT課件(第1課時(shí)函數的單調性) 下載地址:

本站素材僅供學(xué)習研究使用,請勿用于商業(yè)用途。未經(jīng)允許,禁止轉載。

與本課相關(guān)的PPT課件:

熱門(mén)PPT課件
最新PPT課件
相關(guān)PPT標簽

国产小受呻吟GV视频在线观看_精品视频国产香蕉尹人_狠狠做五月深爱婷婷天天综合_欧美黑吊粗大猛烈18P